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ABSTRACT

This paper shows how a genetic algorithm can be used to find near-optimal Bayesian experi-
mental designs for regression models. The design criterion considered is the expected Shannon
information gain of the posterior distribution obtained from performing a given experiment
compared with the prior distribution. Genetic algorithms are described and then applied to
experimental design. The methodology is then illustrated with a wide range of examples: lin-
ear and nonlinear regression, single and multiple factors, and normal and Bernoulli distributed
experimental data.

Key Words: expected information gain, experimental design, genetic algorithm, logistic re-
gression, linear and nonlinear regression, multifactor designs, Shannon information.

1 Introduction

In this paper we present and illustrate a practical, easy-to-use technique for obtaining near-
optimal Bayesian experimental designs for regression models. The technique is based on the use
of a genetic algorithm (GA), and the designs we seek are those that nearly maximize the expected
gain in Shannon information provided by the experiment. We illustrate the broad applicability
of our approach using five examples, which include both linear and nonlinear models as well as
continuous and binary responses.

As in many other areas of statistics, in the past few decades we have seen a significant in-
crease in Bayesian methods in experimental design for regression models. A major reason for
this interest is that, before an experiment is conducted, pertinent information is often available
that can be formally considered in a Bayesian approach. In fact, the existence of this “prior” in-
formation often serves as a prime motivation for the experiment. Chaloner and Verdinelli (1995)
give an excellent overview of Bayesian experimental design for both regression and analysis of
variance models.

Following earlier decision analysis work by Raiffa and Schlaifer (1961), Lindley (1972) sug-
gested a decision-theoretic approach to Bayesian experimental design. For a specified utility
function that reflects the purpose of the experiment, he suggested that a design be chosen which
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maximizes the expected utility. Here the expectation is taken with respect to the two classes
of unknowns: the sample response data, which has yet to be observed when the design is being
considered, and the unknown values of the parameters in an assumed response model. A design
which maximizes the expected utility is known as an “optimal” Bayesian experimental design.

The choice of a utility function is extremely important. Lindley (1956) suggested that
the expected Shannon information gain (Shannon 1948) might be a useful utility, and Stone
(1959), DeGroot (1962, 1986), Bernardo (1979) and others have followed Lindley’s suggestion
to choose designs that maximize the expected gain in Shannon information provided by the
experiment. We note that this criterion is equivalent to choosing designs that maximize the
expected Kullback-Leibler distance between the prior and posterior distributions (Chaloner and
Verdinelli 1995).

In the well-known case of a normal linear regression model y|3,0? ~ N(X3,02%I), Blo? ~
N(Bo,*R), and 02, Bp and R are known, maximization of the expected Shannon information
gain is equivalent to choosing a design that maximizes the determinant of the sum of X7 X and
R~!. Maximizing this determinant is known as the Bayesian D-optimality criterion. Bayesian
D-optimality for linear regression models is considered by Stone (1959), Sinha (1970), Guttman
(1971), Smith and Verdinelli (1980), Dette (1993a, 1993b), and Verdinelli (2000). More recently,
Dette and Sperlich (1994, 1996), Mukhopadhyay and Haines (1995), He, Studden and Sun
(1996), Dette (1996), Dette and Neugebauer (1997), AndereRendon, Montgomery and Rollier
(1997), Dette and Wong (1998), Song and Wong (1998), and Haines (1998) have considered
Bayesian D-optimal designs in nonlinear regression models.

Unfortunately, in many practical cases (such as when the variance o2 in the linear regression
model considered above is unknown), the integral defining the expected Shannon information
gain is intractable. Thus, calculating the expected Shannon information gain (the utility), as
well as maximizing it to obtain the desired optimal Bayesian design, are mathematically difficult
tasks. This difficulty has had two major consequences.

First, with the exception of Flournoy (1993) and Clyde, Muller and Parmigiani (2000), few
papers have appeared in which Bayesian methods have actually been used to determine optimal
experimental designs prior to performing the actual experiment.

Second, various numerical methods for determining “approximately optimal” Bayesian ex-
perimental designs have been proposed. These approximations include methods that involve
simulation, those that approximate the true posterior distribution (for example, using a nor-
mal distribution), those that approximate the prior (such as with a discrete approximation),
and those that approximate the marginal distribution (such as using Laplace’s method). Pilz
(1991) and Chaloner and Verdinelli (1995) discuss these and other approximate methods for
both linear and nonlinear models. Muller (1998) also reviews several simulation-based methods
for estimating the expected gain in Shannon information and the use of simulated annealing for
determining optimal Bayesian designs.

GAs are stochastic optimization methods that utilize Darwinian models of population biol-
ogy for obtaining near-optimal solutions to multivariable objective functions. They are ideally
suited for searching irregular, poorly characterized function spaces. The number of variables
simultaneously considered by GAs may range from a few through hundreds (sometimes even
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thousands). GAs are extremely flexible in that they do not require the usual mathematical
restrictions of strict continuity, differentiability, convexity, etc. of the objective function. The
variables can be some combination of continuous, discrete, or categorical variables, and the
continuous variables may also be ordered. Thus, for reasons such as these, GAs have become
quite useful in practice. Goldberg (1989), Michalewicz (1992) and Holland (1992a) are excellent
textbooks on GAs, while Holland (1992b) provides a nice introductory tutorial.

GAs have only recently been considered in statistical applications. Broudiscou, Leardi and
Phan-Tan-Luu (1996) use a GA to construct standard D-optimal designs, and provide a nice
general introduction to the use of GAs in design. Chatterjee, Laudato and Lynch (1996) intro-
duce the use of GAs in a broad range of statistical applications. In that paper they conclude
“many statistical and mathematical restrictions that usually restrict modeling and analysis can
be dispensed with by employing the GA as an optimization technique.” Following Taguchi’s
robust design ideology, Forouraghi (2000) uses a GA to obtain multiobjective robust designs.

We use a GA to determine near-optimal Bayesian experimental designs for a broad class of
regression models. The class includes both linear and nonlinear models as well as both continuous
and binary responses. For convenience, we restrict consideration to continuous independent (or
predictor) variables, although the extension to categorical factors (such as ANOVA models) is
straightforward.

In Section 2 we present a practical and easy-to-apply GA for use in solving the Shannon
expected information gain criterion to obtain near-optimal Bayesian experimental designs for
regression models. We illustrate the method using a broad range of examples in Section 3.
Finally, we present a summary and some conclusions in Section 4.

2 Near-Optimal Bayesian Experimental Designs

For a given experimental design X, data y is observed according to a specified sampling model
f(y]0,X). Here 0 is a vector of unknown parameters, of interest to be estimated, in the sampling
model. Although the prior distribution 7(0) does not depend on X, the posterior distribution
m(0ly, X) depends on X through the sampling model. The expected gain in Shannon information
given by the design X is

%wmwMMEM@Ha[ﬁ%ﬂﬁﬁhmammwwy 0

This utility function is appropriate when the purpose of the experiment is inference about
0. Note also that (1) is the expected Kullback-Leibler distance between the prior and poste-
rior distributions. Therefore, because the prior does not depend on the design, the design X
maximizing (1) is the one that maximizes the utility function

wm—//ﬁmwmxwwmxw@w@ 2)

In the usual normal linear regression model with known error variance o, maximizing (2) reduces

to finding the design matrix X that maximizes det(XTX + R~1), where ¢?R is the conditional
prior covariance matrix of normally distributed @ given o? and R is known. Although the
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procedure we will describe can easily be applied using numerous other Bayesian design criteria
(see Chaloner and Verdinelli 1995), we restrict our consideration her to finding those designs
that nearly maximize (2). In this paper we refer to those designs that nearly maximize (2) as
near-optimal Bayesian expected information gain (EIG) designs.

As mentioned earlier, the main problem with (2) is that, for many practical problems, the
integration is intractable, and numerical methods are needed to find optimal Bayesian designs.
This is also the case here. We propose a two-stage iterative process for finding near-optimal
Bayesian EIG designs. The process is illustrated in Figure 1. In Stage 1 we use a GA to generate
potentially high EIG designs, and in Stage 2 we use Monte Carlo simulation to numerically
estimate the EIG utility of each of the candidate designs proposed in Stage 1.

2.1 Stage 1 - Genetic Algorithm

A GA operates on a “population” of candidate “solutions” to the optimization problem. Tra-
ditional GAs consider a solution to be a bitstring (i.e., binary string), or chromosome, and the
population is comprised of chromosomes having the same length and structure. In the case of
experimental designs, a single chromosome completely defines an experimental design X. Each
chromosome is first divided into as many bitfields as there are observations or runs, and each
bitfield is then further subdivided into sub-bitfields, which code the factor values for that run.
Thus, each chromosome will have a length equal to the sum of the number of bits needed to
code each factor value multiplied by the number of runs in the experiment. For example, an
n run design involving three factors each taking on 2% values in their respective ranges would
require chromosomes of length 3n2* bits.

However, in many GA applications, natural (base 10) coding of variables can be used without
the necessity of resorting to binary coding. Because of the convenience of using natural variables,
we likewise use this representation here. Thus, the length of each chromosome is simply the
product of the number of runs and the number of factors. For convenience, suppose that the
experiment of interest contains p factors, and n runs must be made. Thus, both p and n are
fixed and known. If we consider each factor level as a gene, then each chromosome (or design
X) has np genes whose values we seek.

We describe the construction of an initial population of solutions and subsequent populations
of solutions obtained by use of the genetic operators of crossover and mutation within the context
of an elitist GA described below.

Recall that we have restricted our consideration to continuous factors. We further assume
that the design region is bounded, say, L; < z; < U; for the i*" factor x;. To begin the GA
process, we first generate an initial population of M random designs using independent uniform
random draws for each of the p factors x; for each of the n runs. We then evaluate the utility
(the “fitness” in GA terminology) of each of these M random designs using the Stage 2 approach
described in Section 2.2. These M designs are then ranked according to their utility, that is,
designs with higher utility get lower ranks. This completes the first generation of the GA.

The second (and subsequent) GA generations are now populated using genetic crossover and
mutation. First consider genetic crossover. Two parent designs are randomly selected without
replacement from the initial population with probability inversely proportional to the rank of
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their utility among all the M designs, making designs with higher utility more likely to be
selected. Then, the n runs of the parent designs are paired, and a new crossover design is
obtained by randomly selecting a run from each pair. The two parents are then returned to the
initial population before the next crossover operation is performed. In this way, additional M
designs are constructed using the crossover operator and, again, the utility of each new design
is evaluated as in Stage 2.

For each of the initial M designs in the current population, we next apply genetic mutation
to each factor x; of each of the n runs. We also decrease the probability that mutation occurs
as the number of generations increases. We accomplish the evolutionary phenomenon known as
“punctuated equilibrium” (or periodic upsets) by executing the GA in successive batches of G
generations which will be described in more detail later. For example, we often set G = 100.

It is desired to mutate each factor value with probability that decays exponentially as a func-
tion of generation. That is, mutations become less and less likely as the number of generations
increases. To accomplish this, at generation g each factor value is mutated with probability
exp(—p X g) where pu is a user-specified mutation rate parameter.

Given that mutation of a factor value occurs, we then mutate the value with expectation
approximately equal to the current value of the factor and variance that decreases with g. We
accomplish this by means of a logit transformation as follows: first compute z = (x—L)/(U —L)
where z, L, and U are the current, minimum and maximum values of the factor. Then calculate
d = log[z/(1 — 2)] + [uniform(0, 1) — .5] x ¥ x exp(—pu x g). Here 9 is a user-specified parameter
that controls the rate at which the variance decreases as a function of g. Finally, compute
u=L+ (U— L) x exp(d)/[1 + exp(d)] which is the desired mutated value between L and U.
This logit transformation has the properties that the expected value is approximately equal to
the current factor value x and the standard deviation decreases with ¢g. Applying this mutation
procedure to each of the initial M designs, we generate an additional M designs and the utility
of each of these designs is calculated using the Stage 2 procedure.

In the original GA, each new population completely replaces the previous one. It can then
happen that the best (most fit) solution in population k£ + 1 is worse than the best solution in
population k. Consequently, very good solutions can be lost forever. A solution to this problem
is to use an “elitist” GA. At each generation we keep the best M designs (those with highest
utilities) out of the 3 x M designs (M initial designs, M crossover designs and M mutated
designs) which becomes the population of initial designs for the next generation.

We execute the above GA in batches of G generations in order to allow for “punctuated
equilibrium.” In simple terms, punctuated equilibrium is an observed genetic phenomenon in
which mutations essentially decrease over time but with periodic upsets in this process (that is,
periodic large-scale catastrophic mutations are occasionally permitted to occur). The best M
solutions after a given batch has been completed become the initial set of designs for the next
batch of G generations (with g reset to 1 for each batch). Note that the probability of mutation
is also reset to its original level with each new batch (and subsequently decreases with each new
generation in a batch). After several batches of G generations of solutions have been obtained
in this way, we finally report the design having the highest utility as our desired near-optimal
Bayesian experimental design. An algorithmic description of this GA process is given in the
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Appendix. In Section 3 we will illustrate the performance of this GA.

2.2 Stage 2 - Utility Estimation

The utility for each of the GA-produced candidate designs generated at Stage 1 is estimated
in Stage 2. For a given candidate design X, we propose estimating the utility in (2) by Monte
Carlo simulation. We assume that it is possible to sample the known prior distribution 7(8)
and assumed sampling model f(y|@,X) conditional on 8 and X. We consider two cases:

1. the posterior distribution 7(0|y, X) is available in closed form; and
2. the posterior distribution is unavailable in closed form.

If the posterior distribution is available in closed form, then we estimate the utility in (2) directly
(using Monte Carlo simulation) as

0(X) = 73 loalr(60]y ", X)]. ®

where {(O(l),y(l)),l = 1,2,...,L} denote the L corresponding dependent pairs of randomly
sampled values: ) from the prior distribution 7(), and y® conditionally from the sampling
model f(y|0®), X).

If the posterior distribution is unavailable in closed form, then we cannot use (3) directly.
In this case, we estimate (2) as

fiy®™)e®, x)r(0V)
FlyW[X)

where {(O(l),y(l))J = 1,2,...,L} is the same set of randomly sampled values as in (3). Here

X 1 &
UX)=7> log : (4)
=1

f (y(l) |X) is a suitable estimate of the marginal distribution evaluated at y(l); that is, an appro-
priate estimate of the posterior normalizing constant for the given design X.

Numerous methods have been proposed for estimating a normalizing constant. The more
popular methods include the Laplace approximation and its variants (Tierney and Kadane 1986),
Monte Carlo simulation methods such as importance sampling (Geweke 1989, Hammersley and
Handscomb 1964), reciprocal importance sampling (Gelfand and Dey 1999), bridge sampling
(Meng and Wong 1996) and path sampling (Gelman and Meng 1998). Two excellent surveys of
existing methods are Gelman and Meng (1998) and DiCiccio et al. (1997). In two examples we
will consider in Section 3, the posterior is unknown, and we calculate f (yW|X) by numerically
integrating the product of the sampling model and the prior distribution over 8. However, if
the dimensionality of 8 exceeds three, numerical integration is generally infeasible and one of
the other methods mentioned above must be used.

3 Examples

We now illustrate the performance of the two-stage iterative procedure in Figure 1 using five
examples: single-factor quadratic regression, single-factor stylized quadratic regression, three-
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factor quadratic response surface, single-factor nonlinear regression, and single-factor logistic

regression.

3.1 Example 1: Single-factor Quadratic Regression

Example 12.5 of Pilz (1991) considers the quadratic regression model
y|0,X ~ N(0 + 61X + 6:X2, 0°1), (5)

where X7 = (x1,z9,...,7,) denotes the n-vector of design values and z; € [—1,1] and o2
is assumed known. The conditional prior distribution of 87 = (8,01, 605) given o2 is 0|o? ~
N(v,0’R). Let v1 = (0,0,0), R = diag(0.1,0.1,0.2) and 0 = 1. Because o? is known, the EIG
in (2) has a closed form and can be evaluated exactly. According to Pilz (1991), the optimal
Bayesian D-optimal design (which as mentioned previously is the same as the optimal EIG
design because o2 is known) places one half the design runs at —1 and one half at 1. This is
a surprising result since the optimal design to estimate a second order model (3 parameters)
contains only two design points. Pilz (1991) provides a nice discussion of the related issue of
one-point designs:

The possibility of the existence of optimal one-point designs arises from the fact
that the Bayesian information matriz is positive definite whatever the design. In
paricular, there is good hope for the optimality of such designs if the prior precision
maltriz has a convenient structure, for example such that the prior knowledge arises
from previous observations with a suitable (almost optimal) “prior” design.

For n = 4, then the optimal EIG design is X* = (—1, —1,1,1).

We ran the GA described in Section 2 for this problem with the following parameters:
n=4,p=1,u=0.01,9 =1, M = 10, one batch with G = 100; namely, populations of size 10
are generated for 100 generations. The result obtained after this implementation of the GA is
XT = (-0.999892, —0.999993, 0.999905, 0.999854) with an EIG of 0.576272, where EIG is defined
in (1). See Figure 2 for a plot which shows how the EIG increases over the 100 generations.

Pilz (1991) discussed the 5 run case (n = 5) and stated that approximate exact designs could
be obtained by rounding one half at —1 and 1 giving X = (-1,-1,-1,1,1) or (=1,—1,1,1,1).
Using two different starting seeds for the random number generators used in the GA, the fol-
lowing results were obtained: X = (—0.999923, —0.999912, 0.999909, 0.999890, 0.999864) with
an EIG of 0.703678 and X' = (—0.998929, —0.9989952, —0.998343, 0.999070, 0.999116) with an
EIG of 0.702559. These results suggest that (—1,—1,—1,1,1) and (—1,—1,1,1,1) are indeed
exact designs, i.e., optimal designs for the five run case.

3.2 Example 2: Single-factor Stylized Quadratic Regression

Dette (1993) considers the following stylized quadratic regression model
y|0,X ~ N(0;(1 — X) + 0. X2, 5°1), (6)

where X?' = (x1,23,...,2,) denotes the n-vector of design values, z; € [0,1] and o2 is assumed
known.
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The conditional prior distribution of 87 = (01,03) given o2 is 8|c? ~ N(0g,c’R). Let
6! = (0,0), R = diag(0.1,0.2) and o2 = 1. Because o? is known, the EIG in (1) has a closed
form and can be evaluated exactly. According to Dette (1993), for n = 8, the optimal Bayesian
D-optimal design (which is also the optimal EIG design because o2 is known) places 6 runs each
at 0 and 2 runs at 1.

We ran the GA for this problem with the following parameters: n = 8, p = 1, p = 0.001,
¥ = 3, M = 10, one batch with G = 100. The result obtained was (to 6 decimal places)
the optimal design found theoretically by Dette (1993), i.e., (0,0,0,0,0,0,1,1) with an EIG of
1.182362.

3.3 Example 3: Three-factor Quadratic Response Surface

Draper and Smith (1981, p. 390) consider an experiment on a chemical process involving three
factors identified as being important. To better understand the impact of the factors on the
response of interest, yield, a 20-run central composite design was performed. In coded variables,
the central composite design used has 8 cube points, one at each corner point of a cube of length
2 centered at (0,0,0), 6 star points consisting of a pair for each of the three axes which are on
the axes 5/3 away from (0,0,0), and 6 center points at (0,0,0). The central composite design
allows a quadratic response surface (regression) model to be fit

3 3
YIO.X~N [0+ 0:Xi+> 0,XX;+> 0;X7,0°T]|, (7
i=1 i<j i=1
where the design X is (X3, X2, X3) whose values are in [—5/3,5/3].
Here, we assume that o2 is also unknown and use the conjugate prior for (6, 0?), where 0

~—

is the vector of 10 regression coefficients in (7). The so-called normal-inverse gamma prior has
the following form: o2 ~ IG(a,3) and the conditional distribution of @ given o2 is 8|0? ~
N(v,o?R). Rather diffuse priors which contain the point estimates of the parameters based on
data from the central composite design were specified as follows: (a = 6, 3 = 100) giving a prior
mean and variance for o2 of 20 and 100, respectively, v is the zero vector and R. is the diagonal
matrix of 5’s except for the [1,1] entry corresponding to the intercept being 500.

To evaluate EIG in (1), while the posterior joint density of (8,0?) has a closed form (i.e.,
normal-inverse gamma), the integral in (1) does not. Hence, (1) is estimated using (3) in which
L = 10,000 Monte Carlo simulations were performed.

For the GA, we have n = 20,p = 3,u = 0.01,¢ = 1, M = 10. The results from several
batches totaling 1100 generations suggested the design displayed in Figure 3. In particular, the
design points obtained had factor levels near £5/3 or 0 so that using these exact values gave a
slightly better design whose EIG is 26.253689 based on L = 1,000, 000. Note the symmetry of the
near-optimal design displayed in Figure 3 which shows one center point run and the remaining
runs on the cube faces whose length is 10/3. Note the missing point on the upper right edge
would be there if we considered a 21-point design. As a matter of comparison, the central
composite design has a smaller EIG of 19.994195 also based on L = 1,000,000. These designs
differ because the criteria used to obtain them are different. The classical central-composite
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design considers constant prediction variance at all points equidistant from the center, while the
Bayesian design considers the expected information gain from the experiment. However, in both
cases, the same response surface model is assumed.

3.4 Example 4: One-factor Nonlinear Regression

Sebastiani and Wynn (2000) consider experimental design for a first-order decay nonlinear re-
gression model:

y]0,X ~ N(exp(—6X),0°1), (])

where X*' = (x1,29,...,2,) denotes the n-vector of design values and z; € [0,1] and o? is
assumed known.

Here we consider the n = 3 case with ¢ = 0.25. To illustrate the use of an asymmetric
prior distribution, we took the prior distribution of 8 to be right-triangular(1,3) whose density
is (0) = (0 — 1)/2. Now the posterior of 6 in EIG given in (1) does not have a closed form but
can be approximated by

f(yl0, X)(0)
FyX)

where f(y|X) was obtained by a one-dimensional numerical integration.

(9)

Sebastiani and Wynn (2000) showed that the optimal design for a three-point discrete uni-
form prior at (1,2,3) was a one point design with all three runs at 0.5628. Likely, the optimal
design is also a one point design for the right-triangular prior considered here. A heuristic opti-
mization was employed that evaluated a number of one point designs that led to the near-optimal
design with all three runs at 0.35625; its EIG is 0.138378 (based on L = 100, 000) for purposes
of comparison.

We ran the GA with n = 3,p = 1,4 = 0.01,% = 3, M = 10, one batch with G = 100, L =
10,000 and obtained the design (0.37218, 0.36468, 0.39967). Its EIG based on L = 100,000 is
0.137985. Thus, the GA found a design comparable to the near-optimal design given above.

3.5 Example 5: One-factor Logistic Regression

Chaloner and Larntz (1989) consider experimental design for a logistic regression model:

v|8, p, X ~ Bernoulli(1/(1 + exp(—B3(X — 1)), (10)

where X?' = (21, 22,...,2,) denotes the n-vector of design values and z; € [—1,1].

Here we take the prior distribution for 3 to be Uniform(6,8), u to be Uniform(—0.3,0.3) and
n = 20. Now the posterior of @ = (3, 1) does not have a closed form but can also be obtained
by (9) where the estimated marginal f(y|X) was obtained by a two-dimensional numerical
integration.

We ran the GA with n = 20,p =1, = 0.01,% = 3, M = 10, one batch with G = 200, L. =
10,000 and obtained the design displayed in Figure 4. (The design points have been jittered
on the vertical scale to distinctly see all 20 design points.) Its EIG based on L = 100,000 is
0.924180.
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Chaloner and Larntz (1989) investigated another criterion, the expected log determinant of
observed information, in which the optimal design was approximately (—0.3,0,0.3) with weights
(0.36,0.28,0.36) (read off their Figure 1). For n = 20, the number of runs at (—0.3,0,0.3) are
(7,6,7) and its EIG is 0.801324 based on L = 100,000. As a matter of comparison, placing
(7,6,7) runs at (—1,0, 1), approximately uniformly spread over the experimental region at three
points, has an EIG of 0.520181. Even taking the near-optimal design displayed in Figure 4 and
rounding to the nearest tenth (i.e., (5,11,4) runs at (—0.1,0,0.1)) has an EIG of 0.840404.

4 Conclusions

This paper has shown how GAs can be used to find near-optimal Bayesian experimental designs.
Here, we considered the expected Shannon information gain, but other design criteria can be
handled easily. This methodology was illustrated with a wide range of examples. The method-
ology is easy to implement and allows a practical approach for designing even more complicated
experiments. The near symmetry of the resulting best designs may suggest a symmetrical design
which may indeed be optimal. In any case, the best designs found by GAs are likely to be good
practical designs and can always be compared against designs suggested by the experimenter’s
intuition.

One possible modification to our approach would be to include in the starting set of designs
to which the GA is applied the designs suggested by the experimenter’s intuition. Although not
illustrated in our examples, GA’s can be applied to ANOVA models as well as regression models.
In summary, we believe that GAs provide a useful addition to the statistical practitioner’s toolkit
for designing experiments.
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Appendix

Pseudo-code for Finding Near-optimal Bayesian Experimental Designs Via a Genetic Algorithm

Notation:

k - number of factors

n - number of runs

xi - it factor with range L; < z; < U;
X - design, an n X k matrix

M - population size

G - number of generations

Pseudo-code

Generation 0:

e generate M random designs X by drawing z; from Uniform(L;, U;) for each of n runs
and k factors

e cvaluate utility (expected information gain) for each design (see (2) or the estimates in (3)
or (4))

e order designs by decreasing utility
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Perform Generation g for generations g = 1,...,G {
Generation g

e generate M designs X by CROSSOVER (see below)
e generate M designs X by MUTATION (see below)
e evaluate utility of the 2M designs generated by crossover and mutation,

e order 3M designs (2M designs and top M designs from generation g — 1) by decreasing
utility

e retain M designs with largest utility for generation g + 1

}

CROSSOVER

e from the M designs retained from the previous generation, pick two designs with proba-
bility inversely proportional to their utility rank (largest utility has rank 1)

e the ith run of the generated design is generated by randomly choosing from the ith runs
of the two picked designs, i =1,...,n

MUTATION

e for each of the M designs retained from the previous generation (referred to as current
designs), a new design is generated as follows

e cach entry of a current design is mutated with probability exp(—u x g), i.e., the mutation
probability depends on g

e if an entry is mutated, the new entry is obtained by drawing from a particular distribution
(see Section 2.1) which is approximately centered at the current entry and whose variance
depends on the tuning parameter 1.
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Figure 1: Two-stage Iterative Bayesian Experimental Design Solver
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